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Modern microarray genotyping now permits simultaneous analysis of tens of thousands of polymorphisms, and 
this technology is being widely used to associate the role of genes with the etiology of complex disease. Genome-
wide hypothesis-free mapping will also increasingly generate candidate genes that require further testing in 
association studies. At the same time, genetic effects are increasingly observed to be buffered by a wide array 
of biologic mechanisms that evolved to protect the genome from environmental insult and that serve to obscure 
observation of direct effects of polymorphisms on a disease phenotype. These two forces combine to make 
replication of genomic epidemiology extraordinarily difficult. Traditional research synthesis of emerging bodies 
of genomic epidemiology is problematic and often quickly outdated. The author proposes that electronic evidence-
based methodology, perhaps modeled after that used by the Cochrane Collaboration in clinical medicine, would 
facilitate the systematic preparation and frequent updating of systematic reviews, which is essential for identifying 
valid and replicable gene-disease associations. 
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Epidemiologists are still coming to grips with the oppor­
tunities and difficulties offered by the burgeoning fields of 
genomics. Most research in this area is now focusing on the 
complex diseases that affect populations via a multifactorial 
genetic and environmental etiology—for example, cancer, heart 
disease, asthma, and diabetes—rather than disease caused 
by single genetic variants. Mendelian or near-Mendelian 

inheritance has been widely studied and is quite well un­
derstood (1). In contrast, complex diseases result from many 
genetic polymorphisms, across the genome, which are now 
being aggressively explored (2, 3). In recent years, it has 
become apparent that replication of observations in genomic 
epidemiology is increasingly difficult to achieve. This brief 
commentary addresses some of the reasons for this difficulty 
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and argues that electronic evidence-based systematic re­
views of the extant literature are needed to provide the most 
valid, current evidence of associations observed in genomic 
epidemiology. 

WHY REPLICATION IS INCREASINGLY DIFFICULT IN 
GENOMIC EPIDEMIOLOGY 

It is estimated that, of the 3 billion base pairs in the human 
genome, only one in 1,200 single nucleotide polymor­
phisms (SNPs) varies among individuals (4). Polymor­
phisms can indicate a change at a single base pair or may 
be thousands of base pairs in size, and they are found 
as tandem repeats, deletions, or insertions. Haplotypes, 
a closely linked set of commonly evolved genes, are used 
to locate polymorphisms that cause disease (5). If a poly­
morphism occurs with less than 1 percent frequency, this 
occurrence is typically called a mutation. The technology 
for examining the structure of the genome is expanding 
rapidly. Microarray analysis was first presented as a concept 
in 1994 (6), and the first paper on the technology was pub­
lished in 1995 (7). Now, the entire human genome can be 
placed on a single microarray (or gene chip). Microarrays 
permit the genome of study subjects to be examined for 
polymorphisms, and new high-density sequencing methods 
can genotype up to 500,000 SNPs. 

The large volumes of genetic data being produced by 
genome-wide screening require new statistical method­
ologies that extend beyond traditional hypothesis-driven 
analyses of one or two candidate genes. Genome-wide 
screening is being conducted for large numbers of candidate 
genes—for example, for atopic asthma (8) and myocardial 
infarction (9)—but also for hypothesis-free genome-wide 
screening. The hypothesis-free approach must account for 
the simultaneous effects of multiple alleles (10, 11) while 
managing the statistical problems inherent in multiple com­
parisons (12–14). Epidemiologic studies have already taken 
advantage of this new strategy to identify SNPs associated 
with age-related macular degeneration (15). 

Many polymorphisms have quite small, independent ef­
fects (relative risks of <1.5) with complex disease diag­
noses, the phenotype, and they exert their effects principally 
by interacting with other polymorphisms or environmental 
risk factors (16–18). The effects of a polymorphism on dis­
ease causation are often further obscured by complex bio­
logic mechanisms, some only recently discovered, which 
have evolved to protect or ‘‘buffer’’ the genome from envi­
ronmental change (19), as well as by other epigenetic forces 
(20–22). 

The proportion of individuals carrying a polymorphism 
who express the expected phenotype (usually by a specified 
age) varies. Genes with low penetrance pose problems in 
genomic epidemiology. If penetrance varies across families, 
estimates of penetrance from families in which a gene was 
first identified may be higher than in the general population. 
For example, the BRCA1 allele causing breast cancer had 85 
percent penetrance in the original families studied but 40–60 
percent penetrance in the broader population by age 70 
years (23). 

Gene expression may be influenced by the parental 
origin of the polymorphism, or imprinting. Therefore, the 
insulin growth factor-2 gene (IGF-2) is active only if de­
rived from the father (24). It is often not known whether 
parent-of-origin effects are due to imprinting or to placental 
or breast milk transfer of immune factors. To disentangle 
parent-of-origin effects, studies must collect DNA from 
parents, a difficult task for late-onset disease when parents 
may be deceased. 

Polymorphisms having opposite effects on a disease may 
be present in the same gene. Unless the polymorphism of 
interest is precisely specified, studies may report different 
findings for the same gene. For example, in the b2 adreno­
ceptor gene (b2AR), a Gly16 mutation increases the risk of 
nocturnal asthma, but another mutation at Glu27 protects 
against bronchial hyperreactivity (25). 

DNA sequences are predetermined at conception, but 
gene function is not. Environmental factors can switch gene 
functions on or off. Methylation is the most widely studied 
of these epigenetic processes (22). Epigenetic phenomena 
reduce specificity of polymorphism-disease associations and 
lower the power of genomic studies to detect real effects. 

A NEED FOR ELECTRONIC EVIDENCE-BASED 
SYSTEMATIC REVIEWS OF GENOMIC EPIDEMIOLOGY 

With so many biologic phenomena reducing the likeli­
hood of the existence of strong single gene-disease associ­
ations, along with the enormous increase in the number of 
genes, SNPs, deletions or insertions, and regions of the 
genome (haplotypes) being explored, it is perhaps to be 
expected that genomic epidemiology is experiencing sub­
stantial difficulty in replicating research findings and in or­
ganizing and synthesizing the large amount of rapidly 
emerging data. Some specific problems in research synthe­
sis of genomic epidemiology are highlighted below. 

Publication bias 

The genomic epidemiologic literature is plagued with 
problems of publication bias, particularly toward selec­
tively publishing positive studies. Systematic reviews per­
mit the formal identification and exploration of publication 
bias. Colhoun et al. (26) describe 19 case-control studies of 
angiotensin-converting enzyme gene (ACE) DD polymor­
phisms and coronary heart disease that show apparent pub­
lication bias in favor of positive studies, and studies 
with odds ratios of up to 3.0, in a series of small studies 
compared with the estimate of 1.1 from a much larger 
database. Ioannidis et al. (27) have reported on several dis­
ease areas, showing that initial studies tend to report large 
risk ratios for specific polymorphisms that are either much 
smaller or not replicated in later investigations. 

Study replication 

As in classical epidemiology, replication is fundamental 
for deciding that an observed association is likely not due to 
chance (28). In genomic epidemiology, replication should 
be exact for the alleles studied and as similar as possible in 
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terms of population and environment. Even exact replica­
tion is susceptible to high rates of false-positive results. In 
one study, simulation of random fluctuations in a whole 
genome scan with no trait-causing loci in 100 sib pairs and 
parents produced 22 regions significant at the p ¼ 0.05 
level, of which four remained significant at p ¼ 0.05 in 
the replication (29). The effect of population differences 
causing heterogeneity can be explored formally within the 
context of a systematic review. 

Subgroup analyses 

The problem of interpretation found in subgroup analysis 
in classical epidemiology (30) applies equally in genomic 
studies. If an association of a polymorphism with disease is 
found only in a subgroup—for example, after multiple sub­
group analyses of gene, microsatellite markers, or SNPs 
evaluated by gender, age, or ethnic group—then the associ­
ation is likely to be spurious unless supported by exact 
replication. Many reported gene-environment interactions 
are derived from subgroup analyses, and it is difficult to 
ascertain whether these analyses were testing a priori hy­
potheses; however, it seems likely that many were not. In­
dividual patient data meta-analysis (see below) can be 
a particularly powerful approach to identifying subgroups 
at differential risk of disease. 

Meta-analysis and estimating typical effect sizes 

There are two principal approaches to statistically pool­
ing data. Most commonly, summary measures of association 
from individual studies are weighted by their inverse vari­
ance and are analyzed to derive a ‘‘typical’’ estimate of risk 
by using a Mantel-Haenszel procedure (31). An example 
was published for the IL-10 1082 G/G genotype, showing 
increased risk for recurrent pregnancy loss (32). Exploration 
of effect modification from covariates may be possible with 
meta-regression techniques (33). 

The second pooling method uses individual subject data 
from studies being analyzed (34). This method is preferred 
because it allows some control of confounding factors in the 
reanalysis as well as subgroup analysis, but it requires the 
collaboration of many investigators and their willingness to 
share data. Ioannidis et al. (35) used this method to summa­
rize the protective effects of CCR5-D32, an allele found in 15 
percent of Caucasians, in slowing down disease progression 
in individuals infected with human immunodeficiency virus. 

Limitations of current databases 

Several large electronic databases collect or ‘‘bank’’ ge­
nomic data for research purposes. The Environmental Ge­
nome Project is targeting SNPs in 200 ‘‘environmentally 
responsive’’ genes (36); the GenBank database, the Nation­
al Institutes of Health’s genetic sequence database, and part 
of the International Nucleotide Sequence Database Collab­
oration (37) are important repositories of SNP-level infor­
mation. ALFRED is a useful resource documenting the 
prevalence of polymorphisms (38). Other databases de­
scribing polymorphism prevalence include the Centers for 

Disease Control and Prevention’s Genotype Prevalence Da­
tabase (39), Allele Frequencies in Worldwide Populations 
(40), and the National Cancer Institute’s SNP500Cancer 
database (41). The International HapMap Project is devel­
oping a map of haplotypes with a prevalence of more than 
5 percent in the human genome, based on genotyping of 
1 million SNPs in 270 individuals (42). These gene banks 
are important for furthering research into disease associa­
tions with candidate polymorphisms, but they do not claim 
to be and are not a substitute for systematic reviews of 
epidemiologic studies of gene-disease associations. 

Systematic reviews 

Evidence-based medicine provides a paradigm for ex­
plicitly and systematically searching, collating, and synthe­
sizing a complete body of evidence on a research topic 
(43). Systematic reviews include publication of detailed 
and transparent literature-searching methods, searching 
for possible bias in that evidence base, evaluation of study 
validity and heterogeneity, and consideration of the impor­
tance of effect size and precision. They have been widely 
adopted in clinical research as the ‘‘gold standard’’ for 
synthesizing and drawing conclusions from an extant body 
of research evidence (44). All scientific literature is ame­
nable to systematic review, a process that does not neces­
sarily require meta-analysis. Many systematic reviews 
identify a body of data not amenable to meta-analysis be­
cause of heterogeneity in study methodology or the popu­
lations studied. 

In genomic epidemiology, there has been a concerted ef­
fort by the Human Genome Epidemiology (HuGE) review 
group, organized by the Centers for Disease Control and 
Prevention (45, 46), to conduct systematic reviews of gene­
disease associations. Explicit criteria are being developed 
to assess the validity of genomic epidemiology publications 
(47). These criteria include recommendations for how stud­
ies may be scored for validity, data integration for calcu­
lating typical effect estimators, and reviews constructed 
according to common genotypes and genotyping methodol­
ogy (48). A recent example, in which individual subject data 
were used, considered polymorphisms in the alcohol de­
hydrogenase gene (ADH) and the aldehyde dehydrogenase 
gene (ALDH) associated with the risk of head and neck 
cancer (49). 

HuGE reviews do not always include details of anal­
yses to identify possible publication bias, exact accounts 
of literature search strategies, descriptions of ‘‘excluded’’ 
studies, or details of actual assessments used to judge indi­
vidual study validity. Importantly, HuGE reviews are not 
updated routinely and frequently, all of which are standard 
features of a modern, electronically based, systematic re­
view. Although electronic files of HuGE publications from 
several journals, including the American Journal of Epide­
miology, are accessible on the HuGE website, the reviews are 
not published online initially, a process that would speed up 
publication, lead to more uniformity in the reports, and ease 
updating. Furthermore, electronic publication would allow 
standard statistical programs for meta-analysis to be embed­
ded within the software for creating the systematic review. 
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Importantly, online publication would permit access to 
a full protocol describing the scope and objectives of the 
planned review. At present, protocols are listed simply as 
titles on the HuGE website. Protocol publication explicitly 
documents the planned objectives of the review, including 
subgroups to be considered in any analysis and other criteria 
subject to bias while the review is being constructed. The 
importance of publishing protocols to avoid ex post facto 
manipulation of primary outcome selection has recently 
been demonstrated in the clinical literature (50). 

Examples of electronic databases for online systematic re­
views from medicine are already well established—notably, 
the Cochrane Library and its REVMAN and METAVIEW 
software for creating systematic reviews (51)—and the social 
sciences (Campbell Collaboration (48)). All review groups 
within these collaborations require frequent updating of 
their reviews. While the Cochrane Collaboration is currently 
focused on reviewing randomized clinical trials, efforts are 
under way to expand this focus to observational studies of 
similar design to genomic epidemiology. The HuGE research 
network, with its developed consensus guidelines (47), ap­
pears best positioned to move to full electronic creation and 
publication of systematic reviews of genomic epidemiology 
as exemplified by the Cochrane Collaboration. 

SUMMARY 

Candidate genes for complex disease are being discov­
ered at an increasing rate, but replication of observed asso­
ciations is proving difficult. Epigenetic phenomena are also 
increasingly being discovered and point to the difficulty in 
conducting genomic epidemiology that can identify strong 
gene-disease associations. Genome-wide hypothesis-free 
mapping will increasingly generate candidate genes that 
require further testing in association studies. An electronic 
evidence-based approach to systematically reviewing and 
synthesizing this rapidly emerging body of genomic epi­
demiology research, with the capacity for continuous up­
dating, is essential for identifying valid and replicable 
gene-disease associations. 
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50.	 Chan AW, Hró bjartsson A, Haahr MT, et al. Empirical 
evidence for selective reporting of outcomes in randomized 
trials. Comparison of protocols to published articles. JAMA 
2004;291:2457–65. 

51.	 The Cochrane Library, Update Software Ltd (http://www. 
update-software.com/cochrane/). 2004. 

Am J Epidemiol 2005;162:297–301 


